#10, Neon

There wouldn’t be much to Las Vegas without neon. We are all familiar with the orange-red glow of neon from the many signs we’ve seen our whole lives. “OPEN” and “VACANCY” are probably the most common but of course every bar and lounge in the country has neon-sign beer adverts festooning the walls and beckoning customers from the windows.

Gas discharge tubes work by filling a vacuum space (like a glass tube) with a substance (like neon gas) at very low pressure. Electric current is passed through the gas in the tube and you get ionization. Some of the gas atoms lose an electron and these electrons migrate to the anode (one end of the tube). The gas ions formed migrate in the electric field towards the cathode (the other end of the tube). On the way they collide with neutral atoms and re-gain an electron. This lowers their energy state and a photon of light is emitted. Most of the photons are in the orange-red spectrum and that’s what we see.

Neon is a so-called “noble” gas. The far right column of the periodic table (group 18) contains the family of inert gases: helium, neon, argon, krypton, xenon, and radon. All are interesting chemically because their outermost electron shells are filled and thus they are not very reactive. It takes a lot of energy or unusual circumstances for these atoms to form compounds. They do ionize however, and when all the atoms in a gas become ions the material is known as plasma. This is often thought of as the fourth state of matter after solids, liquids, and gases. Much of our universe—stars, for example—are plasmas. Lightning is a plasma. Neon and mercury vapor mixtures were used in the tiny cells of the first plasma television sets. Similar gas mixtures form the plasma in fluorescent lighting.

The next time you look at a neon sign beckoning you to drink, gamble, or both, think about plasma. After all, we are stardust. The atoms that make us up were born in stars a long time ago. And to stardust we will eventually return. First the earth will recycle the atoms in our bodies. Some long time later galaxies will collide and recycle whole solar systems. Perhaps on some distant planet in the far future a primitive being will build a device that excites the atoms that once were part of you and they will glow with the colors of the universe.

A seven billion-dollar bet

Barrick Gold is a Canada-based mining company with a market capitalization of about $28 billion. If this seems like a lot you might compare it to Apple which is the world’s biggest by market cap, over two trillion dollars, or two thousand billion if that’s easier to grasp. It’s like you have $28 in your pocket and your buddy has $2000!

Barrick has over 21,000 employees which is about half the population of Siskiyou County. Compare that to the world’s biggest employer, Walmart, which has over two million in its ranks. Again, you’ve got 21 bucks and your pal has 2000!

The biggest mining company in the world is the Australia-based BHP. They weigh in at $128 billion. Barrick is 15th on the list of mining companies.

So they aren’t a small player. They are one of the “majors” in the mining industry. They are making a big seven billion-dollar bet on a copper mine called Reko Diq in a faraway place. A dangerous and unstable place.

Pakistan. And near the border of both Iran and Afghanistan.

The thing is, there’s no mine. Not yet. It’s just an undeveloped area with lots of copper and gold potential. It’s going to cost Barrick seven billion dollars to make it into a producing area. They hope to have a mine that lasts 40 years and can produce up to 80 million tonnes of ore annually.

All the wealth that is tied up in the world’s richest companies, like Saudi Aramco at number two ($2 T), Microsoft at number three ($1.9 T), followed by Alphabet ($1.4 T) and Amazon ($1.2 T), is dependent on the mining industry. I note that the market’s darling, Tesla, is listed at number six ($760 B), and is thus the poster child for mining. All the copper needed for the electric motors, the lithium and nickel for the batteries, not to mention the steel and aluminum requirements that all vehicles share, will have to come from big holes in the ground.

Those holes in the ground have to be where the stuff is. And the stuff could be in a crazy place like Pakistan. I think it’s amazing that an outfit like Barrick is willing to make a seven billion-dollar bet. That’s a big chunk of their overall wealth (one-fourth of their market cap). Would Apple make a five-hundred billion-dollar bet on a new product? I don’t know. I don’t think so.

Let’s hope the bet pays off. We’ll need the copper, that’s for sure. A seven billion-dollar bet is one dollar from each person in the world. I know there’s folks out there that could not part with that dollar as they might go hungry. So I’m willing to pony up a few hundred to cover some of them. How about the rest of you?

#77, Iridium

Iridium is very rare. The best place to find it is in meteorites. In 1980 a team led by physicist Luis Alvarez and his son the geologist Walter Alvarez discovered sedimentary rock layers containing unusually high amounts of iridium. These rock layers occurred worldwide and were dated to 66 million years ago, a time known as the Cretaceous-Paleogene boundary.

During this time a mass extinction event took place on the earth. Many forms of life were wiped out—most famously the dinosaurs. The Alvarez duo proposed that an asteroid impacted the earth and that event and its subsequent “nuclear winter” were the primary cause of the extinction. They got this idea because iridium is present in higher concentrations in astronomical (off-earth) bodies than it is in earth rocks. In a remarkable bit of scientific inference they proposed that evidence of a cosmic collision—namely a crater—should be found to support the hypothesis. Sure enough the Chicxulub crater in the Yucatán peninsula was discovered about ten years later. It was ultimately mapped out and found to contain the appropriate geological signatures suggesting its impact was about 66 million years ago, right on the Cretaceous-Paleogene boundary.

These days the Alavarez hypothesis is widely accepted as the best description of this remarkable extinction event. I got to hear Walter Alvarez give a talk once. He taught a bunch of science teachers some plate tectonics then treated us to an open, free-ranging discussion of his and his father’s work. We asked lots of questions and wound up with a great lesson on induction and the general nature of scientific inquiry. I still have my notes on plate tectonics but I put my pencil down for the rest of it. Too bad, I wish I could remember more about that afternoon!

Iridium is very hard and dense and is alloyed with platinum or osmium to make strong, corrosion resistant parts and tools for specialized industrial and electronic applications. Iridium crucibles, for example, are use in high-temperature crystallography. Only about six metric tons of iridium are produced annually. The very scarcity of iridium in the earth’s surface is what led to the Alvarez’ interest in it when they found it in high concentrations. Their persistence in trying to make sense of those deposits led to their bold claims about an extraterrestrial cause for the mass extinction of life on earth. It’s a crazy notion that an asteroid killed the dinosaurs and yet we pretty much take it for granted today! Even if a better hypothesis some day replaces the Alvarez story theirs is such an interesting piece of scientific detective work that opened up new avenues of thinking about evolution that we’ll likely be talking about it for decades.

The Williamette meteorite was found in Oregon and is now on display in NYC at the American Museum of Natural History. It contains 4.7 ppm of iridium which is almost 5000 times greater than the normal crustal abundance of 0.001 ppm.

By User:Dante Alighieri – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1354017


There’s a reason Stephen King is the best-selling novelist of all time: he’s good. He’s very good. There aren’t many who can do what he does. And what does he do? He writes great stories. He creates interesting characters. He is a master of plot, pacing, and suspense. He can work in any genre. In short he delivers the goods and he’s been delivering the goods for just shy of fifty years.

For a long time King was not taken seriously by the literary establishment. I remember once looking for a King book in City Lights Bookstore, that iconic San Francisco gathering place for poets, hippies, and bohemians. King’s books were of course in the Horror section. But Anne Rice of Interview with a Vampire fame was in the Literature section! I couldn’t figure that one out.

That time is no more. A new King book will now be featured in The New York Times Book Review. Surely you’ve “made it” as a writer if those guys cover your stuff.

Hard Case Crime has resurrected the look and feel of the paperback originals of the 1950s and 1960s. Many great writers like John D. MacDonald, Donald E. Westlake, and Philip K. Dick “made their bones” on such imprints as Avon, Ace, Ballantine, Berkley, Dell, etc. That market dried up a long time ago and books from that era are prized by collectors.

King has contributed three titles to Hard Case: The Colorado Kid (2005), Joyland (2013), and now Later. The latest is by far the best. The other two are good but a little tame for my taste. Later features something that King does better than anyone else and that’s a young protagonist. King does amazing kid characters. They think and talk and act like kids but they get involved in seriously heavy shit and have to do adult things in order to survive. King has written about childhood and adolescence probably more than any other American novelist. He has a sense of the loneliness and the lost innocence that all of us experience growing up and he has mined that terrain for decades. (If you really want an idea of King’s power as a storyteller and as a chronicler of growing up then you must read It.) In King’s world, dramatic and traumatic events from youth reverberate throughout an adult’s life and their attendant terrors return again and again until a spectacular catharsis breaks the spell.

If it sounds a bit like pop psychology, it is. The field of psychology has done more for writers than anyone else, generating a gold mine of possible motivations for almost any act. In King’s hands the links of the chain fit together. The journey the reader takes with the characters feels real even if it contains supernatural elements. The emotions—anxiety, panic, fear—that he evokes in the reader are real. Like I said, he’s a master.

I recommend Later as a good King “starter” book. Lots of people are turned off by the horror label or just don’t like scary stories in general. Later is scary but not in the way vampires or zombies are scary. Like any good writer King uses the forms and tropes of the scary story to talk about real-life things like trying to stay true to yourself in an oppressive and chaotic world. Reading King makes you examine your own life choices as you struggle with the impossible ones his characters have to make.

And if you like Later I’ve got a few suggestions for what you might read next!

California copper

Minerals are buried in the earth. And when people find these minerals they make mines. The minerals come out but the mines stay. Hike almost anywhere in the mountains of the American West and you will find abandoned mines.

These mines are not dead, just dormant. That’s because the minerals are still there. Rarely does a mine deplete an entire resource. It’s the economics that drives the opening and closing of mines. There might still be gold or silver or copper in the ground but it might be too costly to extract.

Today we are in the midst of a copper boom. The demand for copper is increasing and much of that has to do with the “greening” of our economy. An electric motor, and its sister the generator, are mostly just coils of copper wire. Electric vehicles need a hell of a lot of copper, for example. And all the existing demands for copper, like wiring for buildings and homes, are still there and continuing to grow. Suffice to say that copper is the stuff of modernity and the modern world needs it in spades.

The best place to find copper is to look where you found it before. Modern methods allow us to go to old mined areas and exploit the same resource but this time more efficiently. In Lassen County in northeastern California copper was mined from the Superior and Engels mines (near the towns of Taylorsville and Greenville) from 1915-1930. Today a Canadian company has acquired the rights to those old areas and the nearby mineralized zones including the Moonlight Valley deposit. They are calling themselves US Copper Corp. Their development is called the Moonlight-Superior Project. Here’s a map:

They figure there’s a billion pounds of retrievable copper and perhaps a billion more pounds available later in the project’s life, which is estimated at 17 years. And it’s a good place for a mine. State Highway 89 is close by as is the Union Pacific Railroad. California is a safe jurisdiction and due to the large mining industry both in the state and in nearby Nevada there are plenty of skilled workers available.

A mine is a messy thing, though. The legacy of the mining industry is not a good one. Yes they produce the things we need but they have historically done that with little regard for the future. An environmentally progressive mine is certainly possible but it obviously takes more work, money, and time. When the number-crunchers tell the bosses to “go ahead” on a mine they have supposedly calculated the amount of work, money, and time it will take for the company to get it done. Let’s hope they included the so-called “externalities” that economists like to talk about. In this case noise, pollution, traffic, and the disruption and degradation of local ecosystems are the externalities. Capitalism doesn’t deal well with such things. But a mine in our back yard is much better than one in a place like Mongolia because at least we have a chance here at home to see that things get done properly.

#27, Cobalt

You might be familiar with “cobalt blue” pigment. You’ve seen it in ceramics and blue glass. That pigment has been known since antiquity and it became a fashionable choice for painters in the 19th century. Chemically it is called cobalt aluminate (CoAl2O4) and it is made by sintering oxides of both metals (cobalt and aluminum) at high temperatures.

Another cobalt compound is making the news, this one lithium cobalt oxide (LiCoO2). It is used in the cathodes of lithium-ion batteries. In fact cobalt compounds are used throughout the battery industry. All of your modern devices that need recharging are made with lithium-ion batteries. Or at least made from a similar technology, like nickel-cadmium (NiCad) or nickel metal hydride (NiMH), which also require cobalt.

The biggest demand for batteries is the EV industry. Electric vehicles are the future and cobalt is a key component. Here’s the problem: cobalt is hard to find. Big deposits exist in only a handful of places. One of those places is the Congo. The country is called the Democratic Republic of the Congo (DRC) but there’s not much in the way of democracy there. 70% of the world’s cobalt comes from this African nation.

Three-fourths of the cobalt in the Congo is produced in industrial-scale mines. The rest is dug up by hand and by so-called “artisanal” methods. One can imagine the exploitative conditions the miners face in these primitive operations but apparently working for the corporations who run the big mines isn’t a whole lot better. The human rights record in the DRC is abysmal and the region is a source of continuing conflict among government troops and various rebel groups. Casualties among the Congolese and people in neighboring regions over the last two decades number in the millions.

Cobalt is a conflict commodity. A blood mineral. The perfectly reasonable goal of electrifying the world’s vehicle fleet comes with a steep cost in human life.

The other countries producing industrial cobalt are Russia, Australia, the Philippines, Cuba, Canada, China, Morocco, Papua New Guinea, and South Africa. There’s currently only one mine in the United States that produces cobalt. It’s in Idaho, in Lemhi County on the Montana border. Perhaps Americans ought to think about digging up their own stuff first before buying it from despots.

Cobalt is of crucial importance to animal life. Cobalamin, better known as vitamin B12, is necessary for metabolism and DNA synthesis as well as playing a key role in both the circulatory and nervous systems. Humans have to have it in their diet. Mostly we get it from meat, fish, and dairy food. Vegans have to pay attention to B12 uptake, and many use supplements like yeast extracts. Many common grain-based foods are enriched with B12.

Cobalamin comes in more than one molecular form. Cyanocobalamin is the one most often manufactured—via microbial fermentation—as a food additive. Here’s a cool model of the molecule that you can buy for only $59! The cobalt atom is the blue-green (“cyan”) colored ball in the middle:


Like its neighbor iron (#26) this metal atom is a critical piece in the complex building blocks of life. Cobalt’s role in evolution is a very ancient one. Today we modern humans are suddenly in need of cobalt compounds on a very large scale. Let’s hope we can find a way to do it right.

Let’s go shopping!

Here’s what I noticed the last time I looked at the plastic shopping bag from Raley’s:

The bag is “manufactured” by IPS Industries but “made” in Malaysia!

I looked up IPS. They are a privately-held California-based company (Cerritos, LA County) and their homepage says “Intelligent Packaging Solutions.” I suppose that’s where they get their name.

If you go to the Products tab you can see a great variety of trash bags, grocery sacks, can liners, deli sheets, poly mailers, etc. They have plastic, paper, fabric, disposable, compostable, recyclable, reusable, you name it. They can customize your containers and do the art, color, and printing as well.

I’m guessing that for this particular product the plastic comes from Malaysia and it gets turned into a bag at IPS. Turns out that Malaysia is a major supplier of plastics with over a thousand companies involved in making the stuff of which about half goes into packaging. Malaysia and its neighbor Indonesia each sit on over three billion barrels of oil reserves putting them in the top 30 of countries worldwide, ahead of the United Kingdom but below Egypt.

You see the “recycle” logo on a lot of plastics with the polymer code beneath it. In this case HDPE (no. 2 plastic) means High Density Poly-Ethylene. Despite the claims to the contrary it’s not really a recyclable commodity like aluminum or glass. They do collect HDPE and make new stuff with it (that’s what “post-consumer waste” means) but it’s hard to develop a true closed-loop. Plastics have to be sorted, not just by type, but by size (thickness), and they have to be clean. HDPE is typically shredded and then melted and formed into pellets. These pellets are then turned into various products like plastic lumber. HDPE isn’t really recycled so much as re-purposed or “down-cycled.”

The problem is that virgin plastic is usually cheaper than the re-used stuff and it lacks the impurities and irregularities that crop up with post-consumer waste supplies. HDPE is made from ethylene gas which is extracted from petroleum. Half the world’s ethylene goes into producing polyethylene plastics.

This industrially-produced ethylene is the same gas used to ripen fruit. Plants produce ethylene naturally, that’s why storing some fruits in a closed bag will help them ripen. It’s a common practice to harvest fruits before they ripen and then treat them in a warehouse with externally-applied ethylene. This is how bananas get to market. They are picked when mature but still green and then “yellowed” by ethylene before they hit the shelves.

Without packaging we would have a hard time getting fresh, high-quality food. The trade-off of course is the waste and pollution from these packaging products. Single-use plastics are getting a justifiably bad rap these days but the solutions are not simple. The ubiquity of chemicals like HDPE and their amazing versatility means they can’t be replaced easily. Perhaps if things like these shopping bags were stamped with “probably wind up choking a fish or turtle in the ocean” instead of the misleading “recyclable” we might be more aware of the impacts and start to find alternatives!

#26, Iron

Iron—measured by mass—is the most abundant element in the earth. It forms much of our planet’s core. In the crust iron is the fourth-most abundant after oxygen, silicon, and aluminum.

Like most metals iron is not found in its metallic state, except for the occasional meteorite. Crustal iron is almost entirely oxides. All of us are familiar with rust. The chief ores of iron are the oxides hematite (Fe2O3) and magnetite (Fe3O4).

The symbol for iron is Fe from the Latin word ferrum. The pigment Prussian blue is created by the oxidation of ferrous ferrocyanide to the ferricyanide form. Ferro- means iron in the +2 oxidation state and ferri- means iron in the +3 oxidation state. Nowadays they use the old prefixes less and less and instead call Fe 2+ Iron(II) and Fe3+ Iron(III). You can see (if you remember your high school chemistry) that hematite is an iron(III) compound and is sometimes called ferric oxide. (Hint: oxygen is a -2 ion!) Magnetite is an iron(II)/iron(III) mix and is sometimes called ferrous-ferric oxide.

Iron is the most important commodity in the global economy except for perhaps oil. Iron is used to make steel and the modern world is built with steel. 98% of all the iron ore mined in the world goes into steel-making.

Iron ores are hard to smelt. You need a furnace or kiln that can get to 1500 degrees Celsius (2700 ºF). This is about 500 ºC (900 ºF) higher than copper. This is why the so-called Bronze Age happened first. Bronze is an alloy of copper and tin. Iron working didn’t emerge until about two thousand years before Christ.

In the modern world iron ores are heated in blast furnaces with coke (charcoal made from coal) to produce a high-carbon alloy called pig iron. This is further refined to reduce the carbon content to make cast iron. Further purification results in steel. There are many dozens of varieties of steel. Small amounts of elements like chromium are added to improve strength and corrosion resistance.

Steel-making is very energy intensive and is one of the biggest contributors to global greenhouse gas emissions. On the flip side, steel is one of the most recycled commodities in the global economy. Scrap steel is heated in an electric arc furnace to remove impurities so that alloying materials can then be added to the batch and new steel formed.

Iron is also biologically interesting. An adult human body has about four grams of iron in it. Hemoglobin and myoglobin both contain iron. Hemoglobin is necessary to transport oxygen in the blood. Myoglobin is found in the muscles and is also important in oxygen metabolism. Whales for example have a lot of myoglobin in their muscles. This allows them to function without breathing for long periods. Myoglobin contains iron compounds called “hemes” that give red meat its color.

Iron and its primary alloy, steel, are so ubiquitous that we probably don’t appreciate them much. We just go to work in our steel cars, cook in our steel pots, eat with our steel cutlery, garden with our steel tools, and watch the steel cranes unload the steel containers from the steel ships that carry everything across the world.

The Outsider

The Outsider (1980) is a dark and depressing film about The Troubles in Northern Ireland in the mid-70s. It’s fiction but you could be forgiven if you thought it was a documentary. An American comes to Ireland in order to volunteer to fight with the IRA. He’s naive and ignorant and quickly discovers a complex, shadowy world that doesn’t match his simplistic, foreigner’s view of the conflict.

The movie does a great job of immersing you in a blasted-out urban war zone. The bleak setting magnifies the grim resolve of the characters and you lurch along with them in their grubby, chaotic fight. Neither the Republican nor the Unionist Irish come across as freedom fighters but rather as opportunistic gang-bangers. The enlisted British troops are portrayed sympathetically but their officers are thoroughly cynical. The ordinary citizens caught in the morass are the chief victims. It matters not if they collaborate with one side or the other as everyone is so suspicious of everyone else that you are guilty by association alone. Those who try to stay above the fray find it impossible not to take sides at some point.

The acting overall is very strong and the pace and tension of the (rather weak) story is maintained despite the two-hour length. Unfortunately the lead character (played by Craig Wasson) is unsympathetic. He’s a petty, spoiled whiner who oddly wins over his handlers despite their suspicions of his motives. He’s told by multiple people to “go home” and stay out of a fight he doesn’t have a real stake in but listening is not one of his skills. Perhaps the movie makers wanted to highlight the naivete of Irish-Americans who happily opened their wallets to support Irish “relief” societies that really just funded more guns and bombs for IRA killers.

Both the Irish and their British antagonists seek to manipulate the American for their own propaganda purposes and he eventually realizes he’ll never really be able to fight for the cause he thinks he believes in. He’s motivated, we come to understand, by his disillusionment with his service in Vietnam and by tall tales of rebellion told to him by his Irish immigrant grandfather (a nice cameo from Sterling Hayden). Ultimately our hero gets out of Ireland with the help of a woman he falls for (played by Patricia Quinn) and goes back home to Detroit. Although he’s from a comfortable upper-crust background his cab ride takes him through the ghetto and it’s hard to tell which is worse, the American urban wasteland or the bloodied areas of Belfast. In the end he learns some things he wishes he hadn’t and all he can do is rage helplessly about his lost and shattered illusions.

The occupation of Northern Ireland was a political and military disaster for the UK as well as a long-running humanitarian crisis. The denial of civil liberties and the brutal suppression of dissent practiced by the government at Westminster upon their own citizens and within their own borders is among the most shocking of all the atrocities committed in service of The Crown and The Empire. The Outsider is a stark and unforgiving portrait of that time.

#18, Argon

Argon is one of the inert gases. Once they were called “noble” gases because they apparently didn’t mix with the more “common” elements! It actually is possible to create compounds with argon but it’s not something of much interest. Argon gas makes up about one percent of our atmosphere. One percent may not sound like much but the earth is big and it is surrounded by a big ring of gases so there is a lot of argon in our world.

Most people know about argon because of welding. Inert gases are used to bathe or blanket welding electrodes and the welds they produce to prevent oxidation. Our atmosphere is about 20% oxygen which is why we can live in it. But oxygen is potent stuff. It reacts readily with many things, especially metals. Welds are used to join metals and involve melting and fusing. Welds come out better when they are free of contaminants. One of the chief contaminants is air with all its attendant particles, and the other big contaminant is oxygen. Argon and other inert gases like xenon are used in many manufacturing processes where something has to be protected from air (and thus oxygen).

Double-pane windows often have argon gas in the gap rather than air. Argon is denser than air and thus a better insulator. Air is about 80% diatomic nitrogen (N2) and about 20% diatomic oxygen (O2). Nitrogen has an atomic mass of 14 and oxygen 16. Thus the mass of a mole of air is [0.8*(14*2)] + [0.2*(16*2)] which is 22.4 + 6.4 or 28.8 mass units. Argon has an atomic mass of 39.9 so a mole of of it is nearly 40% heavier. (Actually as I mentioned earlier air is about 1% argon so I’d have to adjust my nitrogen number to 79% but the difference is small.)

Other inert (noble) gases are helium, neon, krypton, xenon, and radon. They make up the right-most column or group number 18 of the periodic table. All have filled electron shells and that is the main determinant of their chemical behavior. Argon is obtained by the fractional distillation of liquefied air.